Gene expression pattern during osteogenic differentiation of human periodontal ligament cells in vitro
نویسندگان
چکیده
PURPOSE Periodontal ligament (PDL) cell differentiation into osteoblasts is important in bone formation. Bone formation is a complex biological process and involves several tightly regulated gene expression patterns of bone-related proteins. The expression patterns of bone related proteins are regulated in a temporal manner both in vivo and in vitro. The aim of this study was to observe the gene expression profile in PDL cell proliferation, differentiation, and mineralization in vitro. METHODS PDL cells were grown until confluence, which were then designated as day 0, and nodule formation was induced by the addition of 50 µg/mL ascorbic acid, 10 mM β-glycerophosphate, and 100 nM dexamethasone to the medium. The dishes were stained with Alizarin Red S on days 1, 7, 14, and 21. Real-time polymerase chain reaction was performed for the detection of various genes on days 0, 1, 7, 14, and 21. RESULTS On day 0 with a confluent monolayer, in the active proliferative stage, c-myc gene expression was observed at its maximal level. On day 7 with a multilayer, alkaline phosphatase, bone morphogenetic protein (BMP)-2, and BMP-4 gene expression had increased and this was followed by maximal expression of osteocalcin on day 14 with the initiation of nodule mineralization. In relationship to apoptosis, c-fos gene expression peaked on day 21 and was characterized by the post-mineralization stage. Here, various genes were regulated in a temporal manner during PDL fibroblast proliferation, extracellular matrix maturation, and mineralization. The gene expression pattern was similar. CONCLUSIONS We can speculate that the gene expression pattern occurs during PDL cell proliferation, differentiation, and mineralization. On the basis of these results, it might be possible to understand the various factors that influence PDL cell proliferation, extracellular matrix maturation, and mineralization with regard to gene expression patterns.
منابع مشابه
The potential of human-derived periodontal ligament stem cells to osteogenic differentiation: An In vitro investigation
Background: Periodontal ligament stem cells (PDLSCs) are considered as a type of mesenchymal stem cell that is beneficial target for numerous clinical applications in periodontal tissue regeneration therapy. Materials and Methods: This study examined the effects of dexamethasone (Dex) on human PDLSCs in vitro. PDLSCs obtained from the roots of patient’s teeth were cultured with Dex (0....
متن کاملCurcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway
Objective(s): The aim of this study was to investigate the effect of curcumin on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying potential mechanism.Materials and Methods: The tissue explant adherence method was used to isolate hPDLSCs. Flowcytometry, Alizarin Red staining and Oil Red ...
متن کاملEstrogen-related receptor α is involved in the osteogenic differentiation of mesenchymal stem cells isolated from human periodontal ligaments.
Recently, it has been reported that the orphan nuclear receptor estrogen-related receptor α (ERRα) is involved in the osteogenic differentiation of mesenchymal stem cells (MSCs). Moreover, ERRα has been identified as a novel therapeutic target for treating osteoporosis and other bone diseases. Human periodontal ligament tissue-derived mesenchymal stem cells (hPDLSCs) have recently been used in ...
متن کاملOsteogenic differentiation of human periodontal ligament stem cells expressing lentiviral NEL-like protein 1.
NEL-like protein 1 (NELL1) is a newly identified secreted protein involved in craniosynostosis and has been found to promote osteogenic differentiation of mesenchymal stem cells. The objective of this study was to investigate the effect of NELL1 on osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and the potential underlying mechanism. hPDLSCs underwent lentivirus-m...
متن کاملComparison of the effects of extremely low-frequency Electromagnetic field and Betaine on in vitro osteogenic differentiation of human adipose tissue derived-mesenchymal stem cells
Background & Aim: Extremely low-frequency electromagnetic field (ELF-EMF) and betaine are safe factors in bone fracture repair. This study aimed to compare the effects of these two stimuli on osteogenic differentiation of human adipose stem cells (hADSCs). Methods: After obtaining written informed consent, cells were extracted from abdominal adipose tissue and then cultured in vitro until the ...
متن کاملmiR-21 and miR-101 regulate PLAP-1 expression in periodontal ligament cells.
Periodontal ligament-associated protein-1 (PLAP-1/asporin) is a special marker in periodontal ligament tissue. It is an important regulator of osteogenic differentiation of periodontal ligament cells (PDLCs). This marker is also a prerequisite for periodontal ligament development and mineralization in maintaining homeostasis of the periodontium. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 41 شماره
صفحات -
تاریخ انتشار 2011